相对于传统金融来讲,互联金融面对的客户风险较高,其风控面临的挑战更大,对大数据风控要求就会更高。
大数据风控的优势
大数据风控是一个广义词和一个时代的热词,量化风险控制就是利用数据分析和模型进行风险评估,依据评估分数,预测还款人的还款能力、还款意愿、以及欺诈风险。
大数据风控的优势:
1、用户行为数据成为风控数据
风控数据还是金融数据,例如年龄、收入、职业、学历、资产、负债等信用数据,这些数据同信用相关度高,可以反映用户的还款能力和还款意愿,这些数据因子在风控模型中必不可少,权重也很高,是信用风险评估数据。
但是除了这些强相关的数据,一些用户行为数据对信用风险评估也具有较大的影响,例如用户是否经常去澳门,用户是否经常刻意隐藏自己,用户是否参与高利贷,用户是否具有吸毒倾向,是否患有重大心理疾病等等,这些信息在一定概率下决定了用户风险水平。
大数据风控的一个大的优势就是丰富了信用风险评估的数据纬度,这些用户行为信息,很大程度是大数据采集和分析的结果,用户一般是不会提供给金融行业的。很多信息是规律性信息,需要大数据分析才有可能得到,其在信用评估中的权重,也需要不断的优化模型去完善。
2、丰富数据输入纬度以及较细的颗粒度,对传统风控的补充
传统风控模型已经不能适应复杂的现代风险管理环境,特别在数据信息录入纬度上,影响客户信用评分的信息较多,很多都没有引入到风险评估流程。大数据风控可以提供全面的数据,强相关数据,实效性数据。这些数据颗粒度可以很小,同内部数据以及原有数据打通和整合之后,会影响风险评估结果,提升信用风险管理水平,客观地反映用户风险水平。
信用风险管理中还款意愿也较为重要,多维度、全量的用户行为数据可以客观揭示用户的还款意愿,另外细小的颗粒度信息在打通之后,可以更加客观了解客户的还款能力。全量数据加用户行为分析,可以充分了解客户行为,帮助企业识别出恶意欺诈客户。这些多纬度,细颗粒度,全面的信息正是大数分风控的优势所在,同时也是传统风控的一个很好的补充。
ww***uo***