与传统银行风控模式相比,大数据风控所需数据量更大,数据时效性更强、数据维度更多、数据处理更快。为了应对这些问题,需要应用的新技术包括大数据采集和处理、机器学习、生物特征识别、自然语言处理、用户画像等,其应用的场景也涵盖了贷前准入、贷中审批和贷后管理几个方面。
大数据风控的覆盖流程
大数据覆盖信贷领域各个流程,重点是获客、身份验证和授信环节,贷中后环节。
获客环节建立用户画像,跟踪用户完整生命周期;
身份验证环节,通过身份验证,活体识别等技术解决申请人是否本人的问题,关联分析则是利用图关联技术,找出欺诈团伙;
授信环节汇聚多方数据源,通过建模进行风险定价,金融科技服务商输出信用评分给机构使用;
贷中后环节,主要是排查异常客户,及时报警,以及客户失联修复等。
大数据风控在信贷中应用
当前的信贷审批流程主要分为人工审核和自动审核,对于客户资质好,信用好的客户,只要能通过负面信息,欺诈信息,信用评估,那么系统自 动审批通过。对负面信息和欺诈风险没有通过的客户,系统可以自动拒绝或者申请人工复核,对于信用评分不高的客户,需要人工介入审核。
大数据行业存在的问题
各个大数据公司在数据收集和清洗方式不同,会造成数据污染,这样输出的数据会有一定的不准确性。
目前公民数据主要来自于线下收集和网络行为记录,数据的存在一定的滞后性,单纯线下收集的数据存在一定的延迟性。
壹技提醒大家:大数据还处于发展初期,目前比较大的问题还是数据量不够大,不够全,以及如何协调数据开放和公民隐私之间的矛盾,未来还需要结合人工智能和区块链,物联网等技术,实现数据的不可篡改,数据收集及时等能力,从而更好为金融服务。
ww***uo***