现在的大数据风控大多都是利用多维度数据来识别借款人风险。同信用相关的数据越多地被用于借款人风险评估,借款人的信用风险就被揭示的更充分,信用评分就会更加客观,接近借款人实际风险。
下面壹技就结合了自身的风控经验整理了大数据风控的5个特点。
:分析客户线上申请行为来识别欺诈
风控可以借助于SDK或JS来采集申请人在各个环节的行为,计算客户阅读条款的时间,填写信息的时间,申请贷款的时间等。此外,用户申请的时间也很关键,一般晚上11点以后申请贷款的申请人,欺诈比例和违约比例较高。
第二:验证借款人身份
验证借款人身份的五因素认证是姓名、手机号、身份证号、号、家庭地址。
第三:利用消费记录来进行评分
常用的消费记录由消费、电商购物、公共事业费记录、大宗商品消费等。还可以参考航空记录、手机话费、特殊会员消费等方式。
第四:利用黑名单和灰名单识别风险
黑名单和灰名单是很好的风控方式,但是各个征信公司所拥有的名单仅仅是市场总量的一部分,很多互联网金融公司不得不接入多个风控公司,来获得更多的黑名单来提高查得率。如支付清算协会风险共享系统、中国电子商务协会反欺诈系统等都是黑名单数据库。
第五:参考借款人社会属性和行为来评估信用
参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高;贷款用于家庭消费和教育的贷款人,其贷款违约率低;贷款次数多的人,其贷款违约率低于次贷款的人。
作为大数据风控领域的实践者,壹技专注于大数据风控、信贷管理、信用信息查询等一站式服务模式,并实现了数据在消费金融领域的全流程应用,通过大数据与科技力量,有效控制风险,确保每一步操作都安全无忧。
ww***uo***